Abstract
Osteoporosis and related fractures are a major global health issue, but there are few preventative strategies. Previously reported associations between higher intakes of fruits and vegetables and skeletal health have been suggested to be partly attributable to vitamin C. To date, there is some evidence for a potential role of vitamin C in osteoporosis and fracture prevention but an overall consensus of published studies has not yet been drawn. The present review aims to provide a summary of the proposed underlying mechanisms of vitamin C on bone and reviews the current evidence in the literature, examining a potential link between vitamin C intake and status with osteoporosis and fractures. The Bradford Hill criteria were used to assess reported associations. Recent animal studies have provided insights into the involvement of vitamin C in osteoclastogenesis and osteoblastogenesis, and its role as a mediator of bone matrix deposition, affecting both the quantity and quality of bone collagen. Observational studies have provided some evidence for this in the general population, showing positive associations between dietary vitamin C intake and supplements and higher bone mineral density or reduced fracture risk. However, previous intervention studies were not sufficiently well designed to evaluate these associations. Epidemiological data are particularly limited for vitamin C status and for fracture risk and good-quality randomised controlled trials are needed to confirm previous epidemiological findings. The present review also highlights that associations between vitamin C and bone health may be non-linear and further research is needed to ascertain optimal intakes for osteoporosis and fracture prevention.
Original language | English |
---|---|
Pages (from-to) | 268-283 |
Number of pages | 16 |
Journal | Nutrition Research Reviews |
Volume | 27 |
Issue number | 2 |
Early online date | 21 Nov 2014 |
DOIs | |
Publication status | Published - Dec 2014 |
Keywords
- Vitamin C
- Ascorbic acid
- Bone mineral density
- Fracture risk
- Collagen