TY - JOUR
T1 - Knowledge discovery using bayesian network framework for intelligent telecommunication network management
AU - Bashar, Abul
AU - Parr, Gerard
AU - McClean, Sally
AU - Scotney, Bryan
AU - Nauck, Detlef
PY - 2010
Y1 - 2010
N2 - The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.
AB - The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.
U2 - 10.1007/978-3-642-15280-1_47
DO - 10.1007/978-3-642-15280-1_47
M3 - Article
VL - 6291 LNAI
SP - 518
EP - 529
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -