Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states

Samuel G. Impey, Dominic Smith, Amy Robinson, Daniel Owens, Jonathan Bartlett, Kenneth Smith, Marie Limb, Jonathan Tang, William Fraser, Graeme Close, James P. Morton

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)
28 Downloads (Pure)

Abstract

Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO)-restricted states is potentially regulated through free fatty acid (FFA)-mediated signalling and that leucine-rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine-enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability or whole body lipid oxidation during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine-enriched whey protein gel (GEL), administered as 22 g 1 h pre-exercise, 11 g/h during and 22 g 30 min post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P = 0.001) compared with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 µmol L(-1), respectively). No differences (P = 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol L(-1)) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P = 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol L(-1), respectively). We conclude that leucine-enriched protein feeding does not impair FFA availability or whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO-restricted states to promote skeletal muscle adaptations.
Original languageEnglish
Pages (from-to)407-416
Number of pages10
JournalAmino Acids
Volume47
Issue number2
DOIs
Publication statusPublished - Feb 2015

Keywords

  • Mitochondria
  • Endurance training
  • Lipolysis
  • whey

Cite this