Abstract
With appropriately selected optical frequencies, pulses of radiation propagating through a system of chemically distinct and organized components can produce areas of spatially selective excitation. This paper focuses on a system in which there are two absorptive components, each one represented by surface adsorbates arrayed on a pair of juxtaposed interfaces. The adsorbates are chosen to be chemically distinct from the material of the underlying surface. On promotion of any adsorbate molecule to an electronic excited state, its local electronic environment is duly modified, and its London interaction with nearest neighbor molecules becomes accommodated to the new potential energy landscape. If the absorbed energy then transfers to a neighboring adsorbate of another species, so that the latter acquires the excitation, the local electronic environment changes and compensating motion can be expected to occur. Physically, this is achieved through a mechanism of photon absorption and emission by molecular pairs, and by the engagement of resonance transfer of energy between them. This paper presents a detailed analysis of the possibility of optically effecting such modifications to the London force between neutral adsorbates, based on quantum electrodynamics (QED). Thus, a precise link is established between the transfer of excitation and ensuing mechanical effects.
Original language | English |
---|---|
Pages | 703408 |
Number of pages | 1 |
DOIs | |
Publication status | Published - 21 Aug 2008 |
Event | Physical Chemistry of Interfaces and Nanomaterials V - San Diego, United States Duration: 11 Aug 2008 → … |
Conference
Conference | Physical Chemistry of Interfaces and Nanomaterials V |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 11/08/08 → … |