TY - JOUR
T1 - Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling
AU - Feelisch, Martin
AU - Akaike, Takaaki
AU - Griffiths, Kayleigh
AU - Ida, Tomoaki
AU - Prysyazhna, Oleksandra
AU - Goodwin, Joanna J.
AU - Gollop, Nicholas D.
AU - Fernandez, Bernadette O.
AU - Minnion, Magdalena
AU - Cortese-Krott, Miriam M.
AU - Borgognone, Alessandra
AU - Hayes, Rosie M.
AU - Eaton, Philip
AU - Frenneaux, Michael P.
AU - Madhani, Melanie
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Aims Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1 alpha (PKG1 alpha)]. Methods and results Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1 alpha, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1 alpha oxidation, we used a Cys42Ser PKG1 alpha knock-in (C42S PKG1 alpha KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1 alpha KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1 alpha KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. Conclusion Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1 alpha oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy.
AB - Aims Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1 alpha (PKG1 alpha)]. Methods and results Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1 alpha, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1 alpha oxidation, we used a Cys42Ser PKG1 alpha knock-in (C42S PKG1 alpha KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1 alpha KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1 alpha KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. Conclusion Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1 alpha oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy.
KW - Blood pressure
KW - EXPRESSION
KW - Hydrogen peroxide
KW - I-ALPHA
KW - NITRATE
KW - Nitrite
KW - Persulfides
KW - Redox
KW - STRESS
UR - http://www.scopus.com/inward/record.url?scp=85074299729&partnerID=8YFLogxK
U2 - 10.1093/cvr/cvz202
DO - 10.1093/cvr/cvz202
M3 - Article
C2 - 31372656
VL - 116
SP - 51
EP - 62
JO - Cardiovascular Research
JF - Cardiovascular Research
SN - 0008-6363
IS - 1
ER -