Low-complexity logarithmic step-size-based filtered digital backward propagation algorithm for compensating fiber transmission impairments

Rameez Asif, Chien Yu Lin, Michael Holtmannspoetter, Bernhard Schmauss

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

We have investigated a new method to reduce the complexity of the digital backward propagation algorithm (DBP). A logarithmic step-size based split-step Fourier method (SSFM) is investigated in this paper to compensate fiber transmission impairments i.e. chromatic dispersion (CD) and non-linearities (NL) in dual-polarization quadrature phase shift keying (DP-QPSK) system. The algorithm is numerically investigated for coherently-detected multiple channel DP-QPSK system over 2000km (25 spans) standard single mode fiber (SMF-28) with un-compensated transmission link. The algorithm is numerically evaluated for: (a) 20 channel 56Gbit/s (14GBaud) with 25GHz channel spacing; (b) 10 channel 112Gbit/s (28GBaud) with 50GHz channel spacing and (c) 5 channel 224Gbit/s (56GBaud) with 100GHz channel spacing. Each simulation configuration has the bandwidth occupancy of 500GHz and a total transmission capacity of 1.12Tbit/s. The logarithmic DBP algorithm (L-DBP) shows efficient results as compared to the conventional DBP method based on modified SSFM (M-DBP). The results depict efficient mitigation of CD and NL, therefore improving the non-linear threshold point (NLT) upto 4dB. Furthermore by implementing a low-pass-filter (LPF) in each SSFM step, the required number of DBP stages to compensate fiber transmission impairments can be significantly reduced (multi-span DBP) by 75% as compared to L-DBP and by 50% as compared to M-DBP. The results delineate improved system performance of logarithmic step size based filtered DBP (FL-DBP) both in terms of efficiency and complexity which will be helpful in future deployment of DBP algorithm with real-time signal processing modules for non-linear compensation.

Original languageEnglish
Title of host publicationNext-Generation Optical Communication
Subtitle of host publicationComponents, Sub-Systems, and Systems
DOIs
Publication statusPublished - 2012
EventNext-Generation Optical Communication: Components, Sub-Systems, and Systems - San Francisco, CA, United States
Duration: 24 Jan 201226 Jan 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8284
ISSN (Print)0277-786X

Conference

ConferenceNext-Generation Optical Communication: Components, Sub-Systems, and Systems
Country/TerritoryUnited States
CitySan Francisco, CA
Period24/01/1226/01/12

Keywords

  • Coherent communications
  • Fiber optics communications
  • Modulation
  • Multiplexing
  • Networks
  • Non-linear optics

Cite this