LPS activates ADAM9 dependent shedding of ACE from endothelial cells

William R English, Pierre Corvol, Gillian Murphy

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Angiotensin-I converting enzyme (ACE) is a zinc dependent peptidase with a major role in regulating vasoactive peptide metabolism. ACE, a transmembrane protein, undergoes proteolysis, or shedding, by an as yet unidentified proteinase to release a catalytically active soluble form of the enzyme. Physiologically, soluble ACE in plasma is derived primarily from endothelial cells. We demonstrate that ACE shedding from confluent endothelial cells is increased in response to bacterial lipopolysaccharide, but not phorbol esters. Characterisation of lipopolysaccharide stimulated shedding showed that there is a lag phase before soluble ACE can be detected which is sensitive to inhibitors of translation, NF-κB, TNFα and TNFR-I/II. The shedding phase is less sensitive to these inhibitors, but is ablated by BB-94, a Matrix Metalloproteinase (MMP)/A Disintegrin and Metalloproteinase (ADAM) inhibitor. Tissue Inhibitor of Metalloproteinase (TIMP) profiling suggested a requirement for ADAM9 in lipopolysaccharide induced ACE shedding, which was confirmed by depletion with siRNA. Transient transfection of ADAM9 and ACE cDNAs into HEK293 cells demonstrated that ADAM9 requires both membrane anchorage and its catalytic domain to shed ACE.
Original languageEnglish
Pages (from-to)70-75
Number of pages6
JournalBiochemical and Biophysical Research Communications
Issue number1
Publication statusPublished - 27 Apr 2012

Cite this