Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

Wenyu Zhao, Zhiyuan Liu, Ping Wei, Qingjie Zhang, Wanting Zhu, Xianli Su, Xinfeng Tang, Jihui Yang, Yong Liu, Jing Shi, Yimin Chao, Siqi Lin, Yanzhong Pei

Research output: Contribution to journalArticlepeer-review

233 Citations (SciVal)
23 Downloads (Pure)

Abstract

How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.
Original languageEnglish
Pages (from-to)55-60
Number of pages6
JournalNature Nanotechnology
Volume12
Early online date10 Oct 2016
DOIs
Publication statusPublished - Jan 2017

Keywords

  • Magnetic properties and materials
  • Thermoelectric devices and materials
  • Thermoelectrics

Cite this