Abstract
Phosphorus losses from land to water will be impacted by climate change and land management for food production, with detrimental impacts on aquatic ecosystems. Here we use a unique combination of methods to evaluate the impact of projected climate change on future phosphorus transfers, and to assess what scale of agricultural change would be needed to mitigate these transfers. We combine novel high-frequency phosphorus flux data from three representative catchments across the UK, a new high-spatial resolution climate model, uncertainty estimates from an ensemble of future climate simulations, two phosphorus transfer models of contrasting complexity and a simplified representation of the potential intensification of agriculture based on expert elicitation from land managers. We show that the effect of climate change on average winter phosphorus loads (predicted increase up to 30% by 2050s) will be limited only by large-scale agricultural changes (e.g., 20–80% reduction in phosphorus inputs).
Original language | English |
---|---|
Article number | 161 |
Journal | Nature Communications |
Volume | 8 |
DOIs | |
Publication status | Published - 31 Jul 2017 |
Profiles
-
Kevin Hiscock
- School of Environmental Sciences - Professor of Environmental Sciences
- Water Security Research Centre - Member
- Geosciences - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Research Centre Member, Academic, Teaching & Research