Abstract
Mega hydroelectric dams have become one of the main drivers of habitat loss in tropical forests, converting large tracts of pristine forests into isolated forest islands. Understanding how biodiversity cope with landscape modification in these archipelagic landscapes is of paramount importance to assess the environmental consequences of dam infrastructure and propose mitigation actions for biodiversity conservation. In this context, harvestmen (Opiliones, Arachnida) comprise an excellent indicator taxon of habitat quality, given their high sensitivity to desiccation and microclimatic change. We investigate the effects of landscape change induced by a mega hydropower dam on forest harvestmen species richness, abundance and composition within the Balbina Hydroelectric Dam, Central Brazilian Amazon. We sampled 20 islands and 5 mainland continuous forests, relating our biological response variables to local, patch and landscape scale metrics. Although unexpectedly species richness was unaffected by any local, patch and landscape variables, species composition and abundance were differentially affected by a set of predictor variables at different scales. Forest cover and fallen woody stems were significant predictors of species composition, whereas vegetation density, forest cover, island area, abundance of palm trees, and fallen woody stems best explained harvestmen abundance. Our results indicate that both islands embedded within greater and lower amount of forest cover are important to ensure high diversity of harvestmen. We recommend retaining large forest habitat patches surrounded by a large amount of forest cover to minimise forest disturbance effects and enhance long-term persistence of harvestmen sensitive species in large hydroelectric dams.
Original language | English |
---|---|
Pages (from-to) | 432-444 |
Number of pages | 13 |
Journal | Insect Conservation and Diversity |
Volume | 13 |
Issue number | 5 |
Early online date | 12 Dec 2019 |
DOIs | |
Publication status | Published - 1 Sep 2020 |
Keywords
- Conservation biology
- environmental quality
- habitat fragmentation
- hydroelectric dams
- indicator species
- landscape ecology
Profiles
-
Carlos Peres
- School of Environmental Sciences - Professor of Environmental Sciences
- Centre for Ecology, Evolution and Conservation - Member
- Environmental Biology - Member
- ClimateUEA - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research