Matrix-free hyperfluorescent organic light-emitting diodes based on carbene-metal-amides

Hwan-Hee Cho, Alexander S. Romanov, Manfred Bochmann, Neil C. Greenham, Dan Credgington

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
29 Downloads (Pure)


A wide-gap host matrix is a major obstacle detrimentally influencing the performance of hyperfluorescent organic light-emitting diodes since it substantially increases driving voltage. Moreover, these hyperfluorescent devices typically require at least three components in their emitting layer, which is unfavorable for mass production. To tackle the issue, we report hyperfluorescent organic light-emitting diodes based on a two-component emissive system of carbene-metal-amide donors and conventional fluorescent acceptors. We demonstrate a significant reduction of the driving voltage versus three-component hyperfluorescent devices at practical brightness (1000 cdm-2), leading to a doubling of power conversion efficiency for some composites. From an analysis of thin-film photophysics, it is shown that operational efficiency is limited by Dexter energy transfer between donors and acceptors, which may be reduced by tert-butyl steric substituents, providing new targets for molecular design. While reducing driving voltage, matrix-free hyperfluorescent devices also achieve a maximum external quantum efficiency of 16.5%.
Original languageEnglish
Article number2001965
JournalAdvanced Optical Materials
Issue number5
Early online date28 Dec 2020
Publication statusPublished - 4 Mar 2021


  • carbene–metal–amides
  • exciton energy transfer
  • hyperfluorescent OLEDs

Cite this