Microplastic shape influences fate in vegetated wetlands

Hayley K. McIlwraith, Penelope K. Lindeque, Anastasia Miliou, Trevor J. Tolhurst, Matthew Cole

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
25 Downloads (Pure)

Abstract

Coastal areas are prone to plastic accumulation due to their proximity to land based sources. Coastal vegetated habitats (e.g., seagrasses, saltmarshes, mangroves) provide a myriad of ecosystem functions, such as erosion protection, habitat refuge, and carbon storage. The biological and physical factors that underlie these functions may provide an additional benefit: trapping of marine microplastics. While microplastics occurrence in coastal vegetated sediments is well documented, there is conflicting evidence on whether the presence of vegetation enhances microplastics trapping relative to bare sites and the factors that influence microplastic trapping remain understudied. We investigated how vegetation structure and microplastic type influences trapping in a simulated coastal wetland. Through a flume experiment, we measured the efficiency of microplastic trapping in the presence of branched and grassy vegetation and tested an array of microplastics that differ in shape, size, and polymer. We observed that the presence of vegetation did not affect the number of microplastics trapped but did affect location of deposition. Microplastic shape, rather than polymer, was the dominant factor in determining whether microplastics were retained in the sediment or adhered to the vegetation canopy. Across the canopy, microfibre concentrations decreased from the leading edge to the interior which suggests that even on a small-scale, vegetation has a filtering effect. The outcome of this study enriches our understanding of coastal vegetation as a microplastics sink and that differences among microplastics informs where they are most likely to accumulate within a biogenic canopy.
Original languageEnglish
Article number123492
JournalEnvironmental Pollution
Volume345
Early online date3 Feb 2024
DOIs
Publication statusPublished - 15 Mar 2024

Cite this