TY - GEN
T1 - Microporous polymers for hydrogen storage applications
AU - Wood, Colin D.
AU - Tan, Bien
AU - Stöckel, Ev
AU - Kirk, Ralph
AU - Rosseinsky, Matthew J.
AU - Bradshaw, Darren
AU - Khimyak, Yaroslav
AU - Niu, Hongjun
AU - Trewin, Abbie
AU - Jiang, Jianxing
AU - Su, Fabing
AU - Cooper, Andrew I.
PY - 2007
Y1 - 2007
N2 - We present here a route to produce microporous organic polymers based on the step growth polycondensation of dichloroxylene and other bischloromethyl monomers. We show that materials with very high surface areas (∼1900 m2/g BET; ∼3000 m2/g Langmuir) can be obtained by varying the structure of the monomer. The resulting materials can physisorb up to around 3.7 wt. % H2 at 77 K and 15 bar - the highest value yet reported for an organic polymer. We have used a combination of solid-state NMR, gas sorption measurements, and atomistic simulations in order to rationalize the surface area, pore size, and H2 sorption properties of these polymers. We believe that this flexible methodology represents an important advance for the future design of purely organic sorbents with enhanced gas storage capacities.
AB - We present here a route to produce microporous organic polymers based on the step growth polycondensation of dichloroxylene and other bischloromethyl monomers. We show that materials with very high surface areas (∼1900 m2/g BET; ∼3000 m2/g Langmuir) can be obtained by varying the structure of the monomer. The resulting materials can physisorb up to around 3.7 wt. % H2 at 77 K and 15 bar - the highest value yet reported for an organic polymer. We have used a combination of solid-state NMR, gas sorption measurements, and atomistic simulations in order to rationalize the surface area, pore size, and H2 sorption properties of these polymers. We believe that this flexible methodology represents an important advance for the future design of purely organic sorbents with enhanced gas storage capacities.
UR - http://www.scopus.com/inward/record.url?scp=37349081381&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:37349081381
SN - 0841269556
SN - 9780841269552
T3 - ACS National Meeting Book of Abstracts
BT - 234th ACS National Meeting, Abstracts of Scientific Papers
T2 - 234th ACS National Meeting
Y2 - 19 August 2007 through 23 August 2007
ER -