MicroRNA expression in a phosphaturic mesenchymal tumour

Darrell Green, Irina Mohorianu, Isabelle Piec, Jeremy Turner, Clare Beadsmoore, Andoni Toms, Richard Ball, John Nolan, Iain McNamara, Tamas Dalmay, William D Fraser

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
24 Downloads (Pure)

Abstract

Phosphaturic mesenchymal tumours are a heterogeneous set of bone and soft tissue neoplasms that can cause a number of paraneoplastic syndromes such as tumour induced osteomalacia. The term phosphaturic comes from the common finding that these tumours secrete high levels of fibroblast growth factor 23 which causes renal phosphate wasting leading to hypophosphatemia. Phosphaturic mesenchymal tumours are rare and diagnosis is difficult. A very active 68 year old male presented with bone pain and muscle weakness. He was hypophosphataemic and total alkaline phosphatase was markedly elevated. The patient was placed on vitamin D supplementation but his condition progressed. In the fifth year of presentation the patient required the use of a wheelchair and described “explosive” bone pain on physical contact. Serum 1,25 dihydroxyvitamin D was low and serum fibroblast growth factor 23 was significantly elevated, raising suspicion of a phosphaturic mesenchymal tumour. A lesion was detected in his left femoral head and the patient underwent a total hip replacement. The patient displayed a rapid improvement to his condition and during a three year follow up period he returned to an active lifestyle. As molecular testing may help provide a robust diagnosis and is particularly useful in rare diseases we took a next generation sequencing approach to identify a differential expression of small RNAs in the resected tumour. Small RNAs are non-coding RNA molecules that play a key role in regulation of gene expression and can be used as specific biomarkers. We found an upregulation of miR-197. We also found a downregulation of miR-20b, miR-144 and miR-335 which is a small RNA profile typical of osteosarcoma. MiR-21, the most frequently upregulated microRNA in cancer, was downregulated. We conclude that the specific small RNA profile is typical of osteosarcoma except for the downregulation of oncogenic miR-21. Transcriptional plasticity of miR-197, which is computationally predicted to target fibroblast growth factor 23 messenger RNA, may be upregulated in a cellular effort to correct the ectopic expression of the protein.
Original languageEnglish
Pages (from-to)63–69
Number of pages7
JournalBone Reports
Volume7
Early online date6 Sep 2017
DOIs
Publication statusPublished - Dec 2017

Keywords

  • FGF23
  • hypophosphatemia
  • tumour
  • microRNA
  • next generation sequencing

Cite this