Mobile charging as a service: A reservation-based approach

Xu Zhang, Yue Cao, Linyu Peng, Jichun Li, Naveed Ahmad, Shengping Yu

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


This article aims to design an intelligent mobile charging control mechanism for electric vehicles (EVs), by promoting charging reservations (including service start time, expected charging time, and charging location). EV mobile charging could be implemented as an alternative recharging solution, wherein charge replenishment is provided by economically mobile plug-in chargers, capable of providing on-site charging services. With intelligent charging management, readily available mobile chargers are predictable and could be efficiently scheduled toward EVs with charging demand, based on updated context collected from across the charging network. The context can include critical information relating to charging sessions and charging demand. Furthermore, with reservations introduced, accurate estimations on charging demand for a future moment are achievable, and correspondingly, optimal mobile chargers selection can be obtained. Therefore, charging demands across the network can be efficiently and effectively satisfied, with the support of intelligent system-level decisions. In order to evaluate critical performance attributes, we further carry out extensive simulation experiments with practical concerns to verify our insights observed from the theoretical analysis. Results show great performance gains by promoting the reservation-based mobile charger selection, especially for mobile chargers equipped with suffice power capacity. Note to Practitioners-The convenience of charging service is one major concern for EVs, especially when an urgent charging is required while none charging points are reachable. Recently, a Chinese EV company (NIO, Inc., Shanghai, China) is promoting its mobile charger (ES8 model) to Tesla. Driven by such market trend, this article proposes an efficient approach toward intelligent scheduling of mobile chargers toward parked EVs. Different from fixed charging stations focusing on the problem of long waiting times, the proposed solution is applicable to charging-on-demand with precharging appointment at mobile chargers. Preliminary experiments show great charging efficiency achieved by concerning the issue of where to reserve, i.e., the consideration of optimal selection on mobile chargers. Such mobile charging services can coexist with the governmental or pilots' initiated charging station deployment. However, future research will need to evaluate the holistic service platform.

Original languageEnglish
Pages (from-to)1976-1988
Number of pages13
JournalIEEE Transactions on Automation Science and Engineering
Issue number4
Early online date15 Apr 2020
Publication statusPublished - Oct 2020


  • Battery charging
  • electric vehicles (EVs)
  • mobile charging services
  • queuing theorem

Cite this