Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance

Kihyun Lee, Dae Wi Kim, Do Hoon Lee, Yong Seok Kim, Ji Hye Bu, Ju Hee Cha, Cung Nawl Thawng, Eun Mi Hwang, Hoon Je Seong, Woo Jun Sul, Elizabeth M. H. Wellington, Christopher Quince, Chang Jun Cha

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)


Background : The impact of human activities on the environmental resistome has been documented in many studies, but there remains the controversial question of whether the increased antibiotic resistance observed in anthropogenically impacted environments is just a result of contamination by resistant fecal microbes or is mediated by indigenous environmental organisms. Here, to determine exactly how anthropogenic influences shape the environmental resistome, we resolved the microbiome, resistome, and mobilome of the planktonic microbial communities along a single river, the Han, which spans a gradient of human activities. Results: The bloom of antibiotic resistance genes (ARGs) was evident in the downstream regions and distinct successional dynamics of the river resistome occurred across the spatial continuum. We identified a number of widespread ARG sequences shared between the river, human gut, and pathogenic bacteria. These human-related ARGs were largely associated with mobile genetic elements rather than particular gut taxa and mainly responsible for anthropogenically driven bloom of the downstream river resistome. Furthermore, both sequence- A nd phenotype-based analyses revealed environmental relatives of clinically important proteobacteria as major carriers of these ARGs. Conclusions: Our results demonstrate a more nuanced view of the impact of anthropogenic activities on the river resistome: Fecal contamination is present and allows the transmission of ARGs to the environmental resistome, but these mobile genes rather than resistant fecal bacteria proliferate in environmental relatives of their original hosts.

Original languageEnglish
Article number2
Issue number1
Publication statusPublished - 7 Jan 2020


  • Antibiotic resistance
  • Antibiotic resistance gene
  • Bacterial genome
  • Horizontal gene transfer
  • Human gut microbiome
  • Metagenome
  • Mobile genetic element
  • Pathogen
  • Resistome
  • Transmission

Cite this