Abstract
Atomistic level characterisation of external surface species of mesoporous silica nanomaterials (MSN) poses a significant analytical challenge due to the inherently low content of grafted ligands. This study proposes the use of HR-MAS NMR spectroscopy for a molecular level characterisation of the external surface of carbohydrate-functionalised nanoparticles. MSN differing in size (32 nm, 106 nm, 220 nm) were synthesised using the sol-gel method. The synthesised materials displayed narrow particle size distribution (based on DLS and TEM results) and a hexagonal arrangement of the pores with a diameter of ca. 3 nm as investigated with PXRD and N2 physisorption. The surface of the obtained nanoparticles was functionalised with galactose and lactose using reductive amination as confirmed by FTIR and NMR techniques. The functionalisation of the particles surface did not alter the pore architecture, structure or morphology of the materials as confirmed with TEM imaging. HR-MAS NMR spectroscopy was used for the first time to investigate the structure of the functionalised MSNs suspended in D2O. Furthermore, lactose was successfully attached to the silica without breaking the glycosidic bond. The results demonstrate that HR-MAS NMR can provide detailed structural information on the organic functionalities attached at the external surface of MSN within short experimental times.
Original language | English |
---|---|
Article number | 5906 |
Journal | International Journal of Molecular Sciences |
Volume | 23 |
Issue number | 11 |
Early online date | 25 May 2022 |
DOIs | |
Publication status | Published - 1 Jun 2022 |
Keywords
- mesoporous silica nanoparticles
- MSN
- porous materials
- functionalisation;
- NMR
- HR-MAS NMR
- surface
- functionalisation