TY - JOUR
T1 - MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src
AU - Eisenach, Patricia A.
AU - Roghi, Christian
AU - Fogarasi, Marton
AU - Murphy, Gillian
AU - English, William R.
PY - 2010
Y1 - 2010
N2 - Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level. In this study, we investigated the mechanism by which MT1-MMP regulates the expression of VEGF-A in breast cancer cells. We discovered that MT1-MMP regulates VEGFR-2 cell surface localisation and forms a complex with VEGFR-2 and Src that is dependent on the MT1-MMP hemopexin domain and independent of its catalytic activity. Although the localisation of VEGFR-2 was independent of the catalytic and intracellular domain of MT1-MMP, intracellular signalling dependent on VEGFR-2 activity leading to VEGF-A transcription still required the MT1-MMP catalytic and intracellular domain, including residues Y573, C574 and DKV582. However, there was redundancy in the function of the catalytic activity of MT1-MMP, as this could be substituted with MMP-2 or MMP-7 in cells expressing inactive MT1-MMP. The signalling cascade dependent on the MT1-MMP-VEGFR-2-Src complex activated Akt and mTOR, ultimately leading to increased VEGF-A transcription.
AB - Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level. In this study, we investigated the mechanism by which MT1-MMP regulates the expression of VEGF-A in breast cancer cells. We discovered that MT1-MMP regulates VEGFR-2 cell surface localisation and forms a complex with VEGFR-2 and Src that is dependent on the MT1-MMP hemopexin domain and independent of its catalytic activity. Although the localisation of VEGFR-2 was independent of the catalytic and intracellular domain of MT1-MMP, intracellular signalling dependent on VEGFR-2 activity leading to VEGF-A transcription still required the MT1-MMP catalytic and intracellular domain, including residues Y573, C574 and DKV582. However, there was redundancy in the function of the catalytic activity of MT1-MMP, as this could be substituted with MMP-2 or MMP-7 in cells expressing inactive MT1-MMP. The signalling cascade dependent on the MT1-MMP-VEGFR-2-Src complex activated Akt and mTOR, ultimately leading to increased VEGF-A transcription.
U2 - 10.1242/jcs.062711
DO - 10.1242/jcs.062711
M3 - Article
VL - 123
SP - 4182
EP - 4193
JO - Journal of Cell Science
JF - Journal of Cell Science
SN - 0021-9533
IS - 23
ER -