Abstract
In this paper, we present a point spread function (PSF) modelling technique to improve restoration of x-ray diffraction pattern (XRD). Different diffraction areas have different distortion orientations due to diffuse light distortion (DLD). A new multiple PSF model is introduced and used to restore XRD data. Raw PSFs are collected from isolated spots from x-ray diffraction pattern in high resolution areas which represent orientation of DLDs. An adaptive ridge regression (ARR) technique is used to remove noise from the raw PSF. A target Gaussian function is used to model the raw PSFs. A gradient descent algorithm (GDA) is used to find optimum parameters in a Gaussian function. A set of XRD data are restored by an iterative deconvolution algorithm (IDA) using the modelled PSFs. Experimental results using a single and multiple PSFs are presented and discussed. We show that by using a multiple PSF model in the deconvolution algorithm improved restored X-ray patterns are obtained and as a result the symmetry estimator and χ2 are improved.
Original language | English |
---|---|
Pages | 529-532 |
Number of pages | 4 |
Publication status | Published - 2004 |
Event | 12th European Signal Processing Conference - Vienna, Austria Duration: 6 Sep 2004 → 10 Sep 2004 |
Conference
Conference | 12th European Signal Processing Conference |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 6/09/04 → 10/09/04 |