Projects per year
Abstract
1. Examining assemblage trait responses to environmental stressors extends our understanding beyond patterns of taxonomic diversity and composition, with results potentially transferable among bioregions. But the degree to which trait responses may be generalized across taxonomic groups remains incompletely understood.
2. We compared trait responses among carabids, spiders and plants to an experimentally manipulated gradient of physical disturbance, replicated in open habitats within a forested landscape. Recolonization of recently disturbed habitats is expected to favour species with traits that promote greater dispersal ability, independent of taxa. We specifically predicted that physical disturbance would increase the representation of carabids with smaller body size, wings or wing dimorphism, spiders able to disperse aerially, and plants with therophyte
life-history and wind-dispersed seed.
3. We sampled 197 arthropod species (14 738 individuals) and 164 species of plant. The strength of association between each trait and the disturbance intensity was quantified by correlating matrices of species by traits, species abundance by sites and sites by environment, with significance assessed by comparison with a null model.
4. Responses of biological traits varied among taxa but could be consistently interpreted in terms of dispersal ability. Trait shifts for carabid and plant assemblages were as predicted and correspond to those observed in other disturbance regimes. Assemblages after disturbance comprised smaller and winged carabids, and smaller plants with wind-dispersed seed, consistent with selection for species with better dispersal ability. In contrast, aerial dispersal
did not appear important in spider recolonization, instead terrestrial dispersal ability was suggested by the increased abundance of larger-bodied and cursorial species. However, larger spider body size was also associated with an active-hunting strategy, also favoured in the post-disturbance environment.
5. Trait–function linkage differed among taxa and was sometimes diffuse, with covariance among biological traits and the mapping of individual traits to multiple ecological functions. In particular, body size responses reflected correlations with life history, susceptibility to perturbation and dispersal ability that were inconsistent between the two arthropod groups. Selection of traits for assessment should therefore be taxa specific. Generalizations of trait responses across taxa should only be conducted where functional or ecological significance of assembly-level changes can be understood.
2. We compared trait responses among carabids, spiders and plants to an experimentally manipulated gradient of physical disturbance, replicated in open habitats within a forested landscape. Recolonization of recently disturbed habitats is expected to favour species with traits that promote greater dispersal ability, independent of taxa. We specifically predicted that physical disturbance would increase the representation of carabids with smaller body size, wings or wing dimorphism, spiders able to disperse aerially, and plants with therophyte
life-history and wind-dispersed seed.
3. We sampled 197 arthropod species (14 738 individuals) and 164 species of plant. The strength of association between each trait and the disturbance intensity was quantified by correlating matrices of species by traits, species abundance by sites and sites by environment, with significance assessed by comparison with a null model.
4. Responses of biological traits varied among taxa but could be consistently interpreted in terms of dispersal ability. Trait shifts for carabid and plant assemblages were as predicted and correspond to those observed in other disturbance regimes. Assemblages after disturbance comprised smaller and winged carabids, and smaller plants with wind-dispersed seed, consistent with selection for species with better dispersal ability. In contrast, aerial dispersal
did not appear important in spider recolonization, instead terrestrial dispersal ability was suggested by the increased abundance of larger-bodied and cursorial species. However, larger spider body size was also associated with an active-hunting strategy, also favoured in the post-disturbance environment.
5. Trait–function linkage differed among taxa and was sometimes diffuse, with covariance among biological traits and the mapping of individual traits to multiple ecological functions. In particular, body size responses reflected correlations with life history, susceptibility to perturbation and dispersal ability that were inconsistent between the two arthropod groups. Selection of traits for assessment should therefore be taxa specific. Generalizations of trait responses across taxa should only be conducted where functional or ecological significance of assembly-level changes can be understood.
Original language | English |
---|---|
Pages (from-to) | 1542-1552 |
Number of pages | 11 |
Journal | Journal of Animal Ecology |
Volume | 83 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Nov 2014 |
Keywords
- assembly rules
- body size
- brachypterous
- colonization
- community-weighted mean trait
- dispersal ability
- environmental filters
- functional response
- macropterous
Profiles
-
Paul Dolman
- School of Environmental Sciences - Professor of Conservation Ecology
- Centre for Ecology, Evolution and Conservation - Member
- Environmental Biology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
Projects
- 6 Finished
-
Suffolk Heath Carabid Survey (Scott Pedley)
Suffolk Biodiversity Partnership
15/12/11 → 30/06/12
Project: Research
-
-
Ride Experiment Ground Invertebrate Survey 2011 (Fieldwork Support Costs for Scott Pedley [PhD Student])
25/05/11 → 31/10/11
Project: Research
Research output
- 40 Citations (Scopus)
- 9 Article
-
Plantation clear-fell patches benefit heathland arthropods
Pedley, S., Wolstenholme, P. & Dolman, P., Sept 2023, In: Ecological Solutions and Evidence. 4, 3, e12281.Research output: Contribution to journal › Article › peer-review
Open AccessFile8 Downloads (Pure) -
Experimental evidence that novel land management interventions inspired by history enhance biodiversity
Hawkes, R. W., Smart, J., Brown, A., Jones, H., Lane, S. A., Lucas, C., McGill, J., Owens, N., Ratier Backes, A., Webb, J. R., Wells, D. & Dolman, P. M., May 2021, In: Journal of Applied Ecology. 58, 5, p. 905-918 14 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile5 Citations (Scopus)52 Downloads (Pure) -
Arthropod traits and assemblages differ between core patches, transient stepping-stones and landscape corridors
Pedley, S. & Dolman, P., Apr 2020, In: Landscape Ecology. 35, 4, p. 937–952 16 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile11 Citations (SciVal)27 Downloads (Pure)