Multilayered lipid membrane stacks for biocatalysis using membrane enzymes

George R. Heath, Mengqiu Li, Honling Rong, Valentin Radu, Stefan Frielingsdorf, Oliver Lenz, Julea N. Butt, Lars J. C. Jeuken

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)
12 Downloads (Pure)

Abstract

Multilayered or stacked lipid membranes are a common principle in biology and have various functional advantages compared to single lipid membranes, such as their ability to spatially organize processes, compartmentalize molecules and greatly increase surface area and hence membrane protein concentration. Here we report on a supramolecular assembly of a multilayered lipid membrane system in which poly-L-lysine electrostatically links negatively charged lipid membranes. When suitable membrane enzymes are incorporated, either an ubiquinol oxidase (cytochrome bo3 from Escherichia coli) or an oxygen tolerant hydrogenase (the membrane-bound hydrogenase from Ralstonia eutropha), cyclic voltammetry (CV) reveals a linear increase in biocatalytic activity with each additional membrane layer. Electron transfer between the enzymes and the electrode is mediated by the quinone pool that is present in the lipid phase. We deduce by atomic force microscopy, CV and fluorescence microscopy that quinones are able to diffuse between the stacked lipid membrane layers via defect sites where the lipid membranes are interconnected. This assembly is akin to that of interconnected thylakoid membranes or the folded lamella of mitochondria and have significant potential for mimicry in biotechnology applications such as energy production or biosensing.
Original languageEnglish
Article number1606265
JournalAdvanced Functional Materials
Volume27
Issue number17
Early online date21 Mar 2017
DOIs
Publication statusPublished - 4 May 2017

Keywords

  • biocatalysis
  • biomimicry
  • layer-by-layer assembly
  • self-assembly
  • solid supported membranes

Cite this