TY - JOUR
T1 - Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation
AU - Kazamia, Elena
AU - Czesnick, Hjördis
AU - Nguyen, Thi Thanh Van
AU - Croft, Martin Tom
AU - Sherwood, Emma
AU - Sasso, Severin
AU - Hodson, Sarah James
AU - Warren, Martin James
AU - Smith, Alison Gail
PY - 2012/6
Y1 - 2012/6
N2 - Many algae are auxotrophs for vitamin B12 (cobalamin), which they need as a cofactor for B12-dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B12-dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M.loti (MAFF303099), we found that it was able to support the growth of B12-dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi-continuous culture, indicating a degree of regulation. However, addition of either vitamin B12 or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B12 for growth because it encodes a B12-independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B12. Co-culturing C.reinhardtii with M.loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B12-independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.
AB - Many algae are auxotrophs for vitamin B12 (cobalamin), which they need as a cofactor for B12-dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B12-dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M.loti (MAFF303099), we found that it was able to support the growth of B12-dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi-continuous culture, indicating a degree of regulation. However, addition of either vitamin B12 or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B12 for growth because it encodes a B12-independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B12. Co-culturing C.reinhardtii with M.loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B12-independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.
UR - http://www.scopus.com/inward/record.url?scp=84861935140&partnerID=8YFLogxK
U2 - 10.1111/j.1462-2920.2012.02733.x
DO - 10.1111/j.1462-2920.2012.02733.x
M3 - Article
C2 - 22463064
AN - SCOPUS:84861935140
SN - 1462-2912
VL - 14
SP - 1466
EP - 1476
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 6
ER -