TY - JOUR
T1 - Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF- B- and activator protein-1-dependent monocyte networks
AU - Green, Justin A.
AU - Elkington, Paul T.
AU - Pennington, Caroline J.
AU - Roncaroli, Federico
AU - Dholakia, Shruti
AU - Moores, Rachel C.
AU - Bullen, Anwen
AU - Porter, Joanna C.
AU - Agranoff, Dan
AU - Edwards, Dylan R.
AU - Friedland, Jon S.
PY - 2010
Y1 - 2010
N2 - Inflammatory tissue destruction is central to pathology in CNS tuberculosis (TB). We hypothesized that microglial-derived matrix metalloproteinases (MMPs) have a key role in driving such damage. Analysis of all of the MMPs demonstrated that conditioned medium from Mycobacterium tuberculosis-infected human monocytes (CoMTb) stimulated greater MMP-1, -3, and -9 gene expression in human microglial cells than direct infection. In patients with CNS TB, MMP-1/-3 immunoreactivity was demonstrated in the center of brain granulomas. Concurrently, CoMTb decreased expression of the inhibitors, tissue inhibitor of metalloproteinase-2, -3, and -4. MMP-1/-3 secretion was significantly inhibited by dexamethasone, which reduces mortality in CNS TB. Surface-enhanced laser desorption ionization time-of-flight analysis of CoMTb showed that TNF-α and IL-1β are necessary but not sufficient for upregulating MMP-1 secretion and act synergistically to drive MMP-3 secretion. Chemical inhibition and promoter-reporter analyses showed that NF-κB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-1/-3 secretion. Furthermore, NF-κB p65 and AP-1 c-Jun subunits were upregulated in biopsy granulomas from patients with cerebral TB. In summary, functionally unopposed, network-dependent microglial MMP-1/-3 gene expression and secretion regulated by NF-κB and AP-1 subunits were demonstrated in vitro and, for the first time, in CNS TB patients. Dexamethasone suppression of MMP-1/-3 gene expression provides a novel mechanism explaining the benefit of steroid therapy in these patients.
AB - Inflammatory tissue destruction is central to pathology in CNS tuberculosis (TB). We hypothesized that microglial-derived matrix metalloproteinases (MMPs) have a key role in driving such damage. Analysis of all of the MMPs demonstrated that conditioned medium from Mycobacterium tuberculosis-infected human monocytes (CoMTb) stimulated greater MMP-1, -3, and -9 gene expression in human microglial cells than direct infection. In patients with CNS TB, MMP-1/-3 immunoreactivity was demonstrated in the center of brain granulomas. Concurrently, CoMTb decreased expression of the inhibitors, tissue inhibitor of metalloproteinase-2, -3, and -4. MMP-1/-3 secretion was significantly inhibited by dexamethasone, which reduces mortality in CNS TB. Surface-enhanced laser desorption ionization time-of-flight analysis of CoMTb showed that TNF-α and IL-1β are necessary but not sufficient for upregulating MMP-1 secretion and act synergistically to drive MMP-3 secretion. Chemical inhibition and promoter-reporter analyses showed that NF-κB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-1/-3 secretion. Furthermore, NF-κB p65 and AP-1 c-Jun subunits were upregulated in biopsy granulomas from patients with cerebral TB. In summary, functionally unopposed, network-dependent microglial MMP-1/-3 gene expression and secretion regulated by NF-κB and AP-1 subunits were demonstrated in vitro and, for the first time, in CNS TB patients. Dexamethasone suppression of MMP-1/-3 gene expression provides a novel mechanism explaining the benefit of steroid therapy in these patients.
U2 - 10.4049/jimmunol.0903811
DO - 10.4049/jimmunol.0903811
M3 - Article
VL - 184
SP - 6492
EP - 6503
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 11
ER -