TY - JOUR
T1 - Neural substrates of semantic prospection – Evidence from the dementias
AU - Irish, Muireann
AU - Eyre, Nadine
AU - Dermody, Nadene
AU - O'Callaghan, Claire
AU - Hodges, John R
AU - Hornberger, Michael
AU - Piguet, Olivier
N1 - © 2016 Irish, Eyre, Dermody, O’Callaghan, Hodges, Hornberger and Piguet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2016/5/24
Y1 - 2016/5/24
N2 - The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts.
AB - The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts.
U2 - 10.3389/fnbeh.2016.00096
DO - 10.3389/fnbeh.2016.00096
M3 - Article
VL - 10
JO - Frontiers in Behavioral Neuroscience
JF - Frontiers in Behavioral Neuroscience
SN - 1662-5153
M1 - 96
ER -