TY - JOUR
T1 - New insights into the effects of porosity, pore length, pore shape and pore alignment on drug release from extrusion-based additive manufactured pharmaceuticals
AU - Zhang, Bin
AU - Gleadall, Andy
AU - Belton, Peter
AU - McDonagh, Thomas
AU - Bibb, Richard
AU - Qi, Sheng
PY - 2021/10
Y1 - 2021/10
N2 - Material extrusionbased additive manufacturing (ME-AM) has been recently adopted by the pharmaceutical field as a potential method for decentralised small-batch manufacturing of personalised solid dosage forms. The unique advantage of ME-AM is the ability to implement a wide range of micro-scale internal structures within a dosage form that can be used to manipulate the drug release kinetics. However, currently, there is no fundamental understanding of how the design of microstructures of a dosage form can control drug release. This study used polycaprolactone/ibuprofen as the model system to investigate four key geometric parameters of microstructures, printing pore length (by changing layer number), porosity (by varying the pore width), pore shape (by changing the filament intersection angles from 90° to 30°), and pore alignment, which allowed the construction of a wide range of interior microstructures within a drug-loaded 3D construct. This is the first work to have systematically investigated the interrelated effects of these parameters. The surface area/volume ratio (SA/V) of the constructs were simulated using the newly developed VOLume COnserving model (VOLCO). Four key points were found from this study: (1) drug release rate significantly increased with increasing porosity; (2) pore shape (or filament intersection angles) showed no significant effect on the drug release rate; (3) for the first time, a critical layer number (Lc) or (pore length) effect was observed and reported. The layer number only had a significant impact on drug release when below Lc; (4) when pore width was small, pore alignment significantly affected the release kinetics. The outcomes of this study provide clear principles and design guidance on using microstructures to control drug release from ME-AM solid dosage forms.
AB - Material extrusionbased additive manufacturing (ME-AM) has been recently adopted by the pharmaceutical field as a potential method for decentralised small-batch manufacturing of personalised solid dosage forms. The unique advantage of ME-AM is the ability to implement a wide range of micro-scale internal structures within a dosage form that can be used to manipulate the drug release kinetics. However, currently, there is no fundamental understanding of how the design of microstructures of a dosage form can control drug release. This study used polycaprolactone/ibuprofen as the model system to investigate four key geometric parameters of microstructures, printing pore length (by changing layer number), porosity (by varying the pore width), pore shape (by changing the filament intersection angles from 90° to 30°), and pore alignment, which allowed the construction of a wide range of interior microstructures within a drug-loaded 3D construct. This is the first work to have systematically investigated the interrelated effects of these parameters. The surface area/volume ratio (SA/V) of the constructs were simulated using the newly developed VOLume COnserving model (VOLCO). Four key points were found from this study: (1) drug release rate significantly increased with increasing porosity; (2) pore shape (or filament intersection angles) showed no significant effect on the drug release rate; (3) for the first time, a critical layer number (Lc) or (pore length) effect was observed and reported. The layer number only had a significant impact on drug release when below Lc; (4) when pore width was small, pore alignment significantly affected the release kinetics. The outcomes of this study provide clear principles and design guidance on using microstructures to control drug release from ME-AM solid dosage forms.
KW - Controlled drug release
KW - Design for additive manufacturing
KW - Geometrical parameters
KW - Hot-melt extrusion
KW - Microstructure control
KW - VOLCO model
UR - http://www.scopus.com/inward/record.url?scp=85111267658&partnerID=8YFLogxK
U2 - 10.1016/j.addma.2021.102196
DO - 10.1016/j.addma.2021.102196
M3 - Review article
VL - 46
JO - Additive Manufacturing
JF - Additive Manufacturing
SN - 2214-7810
M1 - 102196
ER -