Abstract
The achievement of optimum conversion efficiency in conventional spontaneous parametric down- conversion requires consideration of quantum processes that entail multisite electrodynamic coupling, actively taking place within the conversion material. The physical mechanism, which operates through virtual photon propagation, provides for photon pairs to be emitted from spatially separated sites of photon interaction; occasionally pairs are produced in which each photon emerges from a different point in space. The extent of such nonlocalized generation is influenced by individual variations in both distance and phase correlation. Mathematical analysis of the global contributions from this mechanism provides a quantitative measure for a degree of positional uncertainty in the origin of down-converted emission.
Original language | English |
---|---|
Article number | 133602 |
Journal | Physical Review Letters |
Volume | 118 |
Issue number | 13 |
Early online date | 30 Mar 2017 |
DOIs | |
Publication status | Published - 31 Mar 2017 |
Profiles
-
David Andrews
- School of Chemistry, Pharmacy and Pharmacology - Emeritus Professor
- Centre for Photonics and Quantum Science - Member
- Chemistry of Light and Energy - Member
Person: Research Group Member, Academic, Teaching & Research
-
Kayn Forbes
- School of Chemistry, Pharmacy and Pharmacology - Lecturer in Theoretical Chemistry
- Centre for Photonics and Quantum Science - Member
- Chemistry of Light and Energy - Member
Person: Research Group Member, Academic, Teaching & Research