TY - JOUR
T1 - Non−noble single−atom alloy for electrocatalytic nitrate reduction using hierarchical high−throughput screening
AU - Wang, Shuo
AU - Li, Lei
AU - Hui, Kwan San
AU - Dinh, Duc Anh
AU - Lu, Zhiyi
AU - Zhang, Qiuju
AU - Hui, Kwun Nam
N1 - Data availability: Data will be made available on request.
Acknowledgements: This work was funded by the Science and Technology Development Fund, Macau SAR (File no. 0046/2019/AFJ, 0007/2021/AGJ, 006/2022/ALC), University of Macau (File no., MYRG2020 −00187 −IAPME and MYRG2022 −00223 −IAPME), the UEA funding, the Strategic Priority Research Program of the Chinese Academy of Sciences, (Grant No. XDB0450401), and Natural Science Foundation of Zhejiang Province (LY21B030006). The DFT calculations are performed at High Performance Computing Cluster (HPCC) of Information and Communication Technology Office (ICTO) at University of Macau.
PY - 2023/8
Y1 - 2023/8
N2 - Electrochemical nitrate reduction reaction (NO3RR) holds promise for the management of wastewater contamination and synthesis of carbon−neutral ammonia (NH3). However, high−quality catalysts with controllable reaction pathways and high activity and selectivity are still lacking. The emerging single atom alloys (SAAs) offer attractive possibilities in nitrate reduction due to their unique atomic and electronic structures. By high−throughput first−principles calculations, we explore the possible incorporation of a series of transition−metal alloyed Cu−based SAAs, referred to as TM/Cu(111), for NO3RR toward NH3. A hierarchical four−step screening strategy have been employed to evaluate twenty−seven SAA catalysts yielding three alloying elements (Ti, Ni and Nb) with high catalytic activity and NO3RR selectivity. Finally, only Ni/Cu(111) possess the best activity among these three candidates because of its lowest limiting potential of −0.29 V. After further analysis, we found that the adsorption free energy of *NO3 can be recognized as efficient descriptor to design and predict the NO3RR performance of SAA. Furthermore, the Cu−based SAAs were revealed to exhibit pH dependent properties, which influence the competition between the hydrogen evolution reaction (HER) and NO3RR. This work not only indicates the significant potential of SAA in electrocatalysis for NO3RR to NH3, but also highlights the important influence of pH on the activity and selectivity of catalysts under reaction conditions.
AB - Electrochemical nitrate reduction reaction (NO3RR) holds promise for the management of wastewater contamination and synthesis of carbon−neutral ammonia (NH3). However, high−quality catalysts with controllable reaction pathways and high activity and selectivity are still lacking. The emerging single atom alloys (SAAs) offer attractive possibilities in nitrate reduction due to their unique atomic and electronic structures. By high−throughput first−principles calculations, we explore the possible incorporation of a series of transition−metal alloyed Cu−based SAAs, referred to as TM/Cu(111), for NO3RR toward NH3. A hierarchical four−step screening strategy have been employed to evaluate twenty−seven SAA catalysts yielding three alloying elements (Ti, Ni and Nb) with high catalytic activity and NO3RR selectivity. Finally, only Ni/Cu(111) possess the best activity among these three candidates because of its lowest limiting potential of −0.29 V. After further analysis, we found that the adsorption free energy of *NO3 can be recognized as efficient descriptor to design and predict the NO3RR performance of SAA. Furthermore, the Cu−based SAAs were revealed to exhibit pH dependent properties, which influence the competition between the hydrogen evolution reaction (HER) and NO3RR. This work not only indicates the significant potential of SAA in electrocatalysis for NO3RR to NH3, but also highlights the important influence of pH on the activity and selectivity of catalysts under reaction conditions.
U2 - 10.1016/j.nanoen.2023.108543
DO - 10.1016/j.nanoen.2023.108543
M3 - Article
VL - 113
JO - Nano Energy
JF - Nano Energy
SN - 2211-2855
M1 - 108543
ER -