Abstract
Background: Many species are exhibiting range shifts associated with anthropogenic change. For migratory species, colonisation of new areas can require novel migratory programmes that facilitate navigation between independently-shifting seasonal ranges. Therefore, in some cases range-shifts may be limited by the capacity for novel migratory programmes to be transferred between generations, which can be genetically and socially mediated.
Methods: Here we used 50 years of North American Breeding Bird Survey and Audubon Christmas Bird Count data to test the prediction that breeding and/or non-breeding range-shifts are more prevalent among flocking migrants, which possess a capacity for rapid social transmission of novel migration routes.
Results: Across 122 North American bird species, social migration was a significant positive predictor for the magnitude of non-breeding centre of abundance (COA) shift within our study region (conterminous United States and Southern Canada). Across a subset of 81 species where age-structured flocking was determined, migrating in mixed-age flocks produced the greatest shifts and solo migrants the lowest. Flocking was not a significant predictor of breeding COA shifts, which were better explained by absolute population trends and migration distance.
Conclusions: Our results suggest that social grouping may play an important role in facilitating non-breeding distributional responses to climate change in migratory species. We highlight the need to gain a better understanding of migratory programme inheritance, and how this influences spatiotemporal population dynamics under environmental change.
Methods: Here we used 50 years of North American Breeding Bird Survey and Audubon Christmas Bird Count data to test the prediction that breeding and/or non-breeding range-shifts are more prevalent among flocking migrants, which possess a capacity for rapid social transmission of novel migration routes.
Results: Across 122 North American bird species, social migration was a significant positive predictor for the magnitude of non-breeding centre of abundance (COA) shift within our study region (conterminous United States and Southern Canada). Across a subset of 81 species where age-structured flocking was determined, migrating in mixed-age flocks produced the greatest shifts and solo migrants the lowest. Flocking was not a significant predictor of breeding COA shifts, which were better explained by absolute population trends and migration distance.
Conclusions: Our results suggest that social grouping may play an important role in facilitating non-breeding distributional responses to climate change in migratory species. We highlight the need to gain a better understanding of migratory programme inheritance, and how this influences spatiotemporal population dynamics under environmental change.
Original language | English |
---|---|
Article number | 3 |
Journal | Movement Ecology |
Volume | 13 |
DOIs | |
Publication status | Published - 13 Jan 2025 |
Keywords
- Cultural inheritance
- Distributions
- Migration
- Navigation
- Range dynamics
- Social behaviour