Abstract
The WWP2 E3 ubiquitin ligase has previously been shown to regulate TGFβ/Smad signalling activity linked to epithelial–mesenchymal transition (EMT). Whilst inhibitory I-Smad7 was found to be the preferred substrate for full-length WWP2-FL and a WWP2-C isoform, WWP2-FL also formed a stable complex with an N-terminal WWP2 isoform (WWP2-N) in the absence of TGFβ, and rapidly stimulated activating Smad2/3 turnover. Here, using stable knockdown experiments we show that specific depletion of individual WWP2 isoforms impacts differentially on Smad protein levels, and in WWP2-N knockdown cells we unexpectedly find spontaneous expression of the EMT marker vimentin. Re-introduction of WWP2-N into WWP2-N knockout cells also repressed TGFβ-induced vimentin expression. In support of the unique role for WWP2-N in regulating TGFβ/Smad functional activity, we then show that a novel V717M-WWP2 mutant in the MZ7-mel melanoma cell line forms a stable complex with the WWP2-N isoform and promotes EMT by stabilizing Smad3 protein levels. Finally, we report the first analysis of WWP2 expression in cancer cDNA panel arrays using WWP2 isoform-specific probes and identify unique patterns of WWP2 isoform abundance associated with early/advanced disease stages. WWP2-N is significantly downregulated in stage IIIC melanoma and up-regulated in stage II/III prostate cancer, and we also find isolated examples of WWP2-FL and WWP2-C overexpression in early-stage breast cancer. Together, these data suggest that individual WWP2 isoforms, and particularly WWP2-N, could play central roles in tumourigenesis linked to aberrant TGFβ-dependent signalling function, and also have potential as both prognostic markers and molecular therapeutic targets.
Original language | English |
---|---|
Pages (from-to) | 2127-2135 |
Number of pages | 39 |
Journal | Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease |
Volume | 1832 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1 Dec 2013 |
Keywords
- TGFβ
- Smads
- Ubiquitin ligase
- Transcription
- Cancer
- EMT