Abstract
In previous work, we described how learning the pattern of recognition errors made by an individual using a certain ASR system leads to increased recognition accuracy compared with a standard MLLR adaptation approach. This was the case for low-intelligibility speakers with dysarthric speech, but no improvement was observed for normal speakers. In this paper, we describe an alternative method for obtaining the training data for confusion-matrix estimation for normal speakers which is more effective than our previous technique. We also address the issue of data sparsity in estimation of confusion-matrices by using non-negative matrix factorization (NMF) to discover structure within them. The confusion-matrix estimates made using these techniques are integrated into the ASR process using a technique termed as "metamodels", and the results presented here show statistically significant gains in word recognition accuracy when applied to normal speech.
Original language | English |
---|---|
Pages | 1599-1602 |
Number of pages | 4 |
Publication status | Published - Sep 2009 |
Event | 10th Annual Conference of the International Speech Communication Association (INTERSPEECH) - Brighton, United Kingdom Duration: 6 Sep 2009 → 10 Sep 2009 |
Conference
Conference | 10th Annual Conference of the International Speech Communication Association (INTERSPEECH) |
---|---|
Country/Territory | United Kingdom |
City | Brighton |
Period | 6/09/09 → 10/09/09 |