On the estimation of normal copula discrete regression models using the continuous extension and simulated likelihood

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
16 Downloads (Pure)

Abstract

The continuous extension of a discrete random variable is amongst the computational methods used for estimation of multivariate normal copula-based models with discrete margins. Its advantage is that the likelihood can be derived conveniently under the theory for copula models with continuous margins, but there has not been a clear analysis of the adequacy of this method. We investigate the asymptotic and small-sample efficiency of two variants of the method for estimating the multivariate normal copula with univariate binary, Poisson, and negative binomial regressions, and show that they lead to biased estimates for the latent correlations, and the univariate marginal parameters that are not regression coefficients. We implement a maximum simulated likelihood method, which is based on evaluating the multidimensional integrals of the likelihood with randomized quasi-Monte Carlo methods. Asymptotic and small-sample efficiency calculations show that our method is nearly as efficient as maximum likelihood for fully specified multivariate normal copula-based models. An illustrative example is given to show the use of our simulated likelihood method.
Original languageEnglish
Pages (from-to)1923-1937
Number of pages15
JournalJournal of Statistical Planning and Inference
Volume143
Issue number11
Early online date2 Jul 2013
DOIs
Publication statusPublished - Nov 2013

Keywords

  • continuous extension
  • Jitters
  • Multivariate normal copula
  • Rectangle probabilities
  • Simulated likelihood

Cite this