TY - JOUR
T1 - On the influence of the Bay of Bengal's sea surface temperature gradients on rainfall of the South Asian monsoon
AU - Sheehan, Peter M. F.
AU - Matthews, Adrian J.
AU - Webber, Benjamin G. M.
AU - Sanchez-Franks, Alejandra
AU - Klingaman, Nicholas M.
AU - Vinayachandran, P. N.
N1 - Acknowledgments: The Bay of Bengal Boundary Layer Experiment, jointly funded by the Ministry of Earth Sciences (India) and NERC/UKRI (United Kingdom), supported PMFS, BGMW and AJM (NE/L013827/1), ASF (NE/L013835/1), and PNV. NPK was supported by a NERC Independent Research Fellowship (NE/L010976/1). Part of the research presented in this paper was carried out on the High Performance Computing Cluster supported by the Research Computing Service at the University of East Anglia. PMFS thanks Andy Heaps and Liang Guo, both of the National Centre for Atmospheric Sciences (Reading, United Kingdom) for assistance in accessing archived model output and for assistance with the WAM-2layers moisture-tracking model respectively.
Data availability statement. The code of the MetUM is available only under license from the UK Met Office; for details, see www.metoffice. gov.uk/research/modelling-systems/unified-model. Output relevant to this paper has been archived at https://figshare.com/articles/dataset/Sheehan_et_al_2022_MetUM_output/19620975. The WAM2layers model code is available at github.com/ruudvdent/WAM2layersPython/tree/distance/.
PY - 2023/9/15
Y1 - 2023/9/15
N2 - The southwest monsoon delivers over 70% of India's annual rainfall and is crucial to the success of agriculture across much of South Asia. Monsoon precipitation is known to be sensitive to sea surface temperature (SST) in the Bay of Bengal (BoB). Here, we use a configuration of the Unified Model of the UK Met Office coupled to an ocean mixed layer model to investigate the role of upper-ocean features in the BoB on southwest monsoon precipitation. We focus on the pronounced zonal and meridional SST gradients characteristic of the BoB; the zonal gradient in particular has an as-yet unknown effect on monsoon rainfall. We find that the zonal SST gradient is responsible for a 50% decrease in in rainfall over the southern BoB (approximately 5 mm day-1), and a 50% increase in rainfall over Bangladesh and northern India (approximately 1 mm day-1). This increase is remotely forced by a strengthening of the monsoon Hadley circulation. The meridional SST gradient acts to decrease precipitation over the BoB itself, similarly to the zonal SST gradient, but does not have comparable effects over land. The impacts of barrier layers and high-salinity sub-surface water are also investigated, but neither has significant effects on monsoon precipitation in this model; the influence of barrier layers on precipitation is felt in the months after the southwest monsoon. Models should accurately represent oceanic processes that directly influence BoB SST, such as the BoB cold pool, in order to faithfully represent monsoon rainfall.
AB - The southwest monsoon delivers over 70% of India's annual rainfall and is crucial to the success of agriculture across much of South Asia. Monsoon precipitation is known to be sensitive to sea surface temperature (SST) in the Bay of Bengal (BoB). Here, we use a configuration of the Unified Model of the UK Met Office coupled to an ocean mixed layer model to investigate the role of upper-ocean features in the BoB on southwest monsoon precipitation. We focus on the pronounced zonal and meridional SST gradients characteristic of the BoB; the zonal gradient in particular has an as-yet unknown effect on monsoon rainfall. We find that the zonal SST gradient is responsible for a 50% decrease in in rainfall over the southern BoB (approximately 5 mm day-1), and a 50% increase in rainfall over Bangladesh and northern India (approximately 1 mm day-1). This increase is remotely forced by a strengthening of the monsoon Hadley circulation. The meridional SST gradient acts to decrease precipitation over the BoB itself, similarly to the zonal SST gradient, but does not have comparable effects over land. The impacts of barrier layers and high-salinity sub-surface water are also investigated, but neither has significant effects on monsoon precipitation in this model; the influence of barrier layers on precipitation is felt in the months after the southwest monsoon. Models should accurately represent oceanic processes that directly influence BoB SST, such as the BoB cold pool, in order to faithfully represent monsoon rainfall.
KW - Atmosphere-ocean interaction
KW - General circulation models
KW - Indian Ocean
KW - Monsoons
KW - Rainfall
KW - Sea surface temperature
UR - http://www.scopus.com/inward/record.url?scp=85171434153&partnerID=8YFLogxK
U2 - 10.1175/JCLI-D-22-0288.1
DO - 10.1175/JCLI-D-22-0288.1
M3 - Article
VL - 36
SP - 6499
EP - 6513
JO - Journal of Climate
JF - Journal of Climate
SN - 0894-8755
IS - 18
ER -