Projects per year
Abstract
We introduce a novel ultrametric on the set of equivalence classes of cuspidal irreducible representations of a general linear group GL(N) over a nonarchimedean local field, based on distinguishability by twisted gamma factors. In the case that N is prime and the residual characteristic is greater than or equal to N/2, we prove that, for any natural number i at most N/2, there are pairs of cuspidal irreducible representations whose logarithmic distance in this ultrametric is precisely i. This implies that, under the same conditions on N, the bound N/2 in the Local Converse Theorem for GL(N) is sharp.
Original language | English |
---|---|
Pages (from-to) | 6-17 |
Number of pages | 12 |
Journal | Proceedings of the American Mathematical Society, Series B |
Volume | 5 |
DOIs | |
Publication status | Published - 20 Feb 2018 |
Profiles
-
Shaun Stevens
- School of Engineering, Mathematics and Physics - Professor of Mathematics
- Algebra, Number Theory, Logic, and Representations (ANTLR) - Group Lead
Person: Research Group Member, Academic, Teaching & Research
Projects
- 1 Finished
-
Explicit Correspondences in Number Theory.
Engineering and Physical Sciences Research Council
31/03/10 → 30/03/15
Project: Fellowship