Projects per year
Abstract
In the convolutional retinex approach to image lightness processing, an image is filtered by a centre/surround operator that is designed to mitigate the effects of shading (illumination gradients), which in turn compresses the dynamic range. Typically, the parameters that define the shape and extent of the filter are tuned to provide visually pleasing results, and a mapping function such as a logarithm is included for further image enhancement. In contrast, a statistical approach to convolutional retinex has recently been introduced, which is based upon known or estimated autocorrelation statistics of the image albedo and shading components. By introducing models for the autocorrelation matrices and solving a linear regression, the optimal filter is obtained in closed form. Unlike existing methods, the aim is simply to objectively mitigate shading, and so image enhancement components such as a logarithmic mapping function are not included. Here, the full mathematical details of the method are provided, along with implementation details. Significantly, it is shown that the shapes of the autocorrelation matrices directly impact the shape of the optimal filter. To investigate the performance of the method, we address the problem of shading removal from text documents. Further experiments on a challenging image dataset validate the method.
Original language | English |
---|---|
Article number | 204 |
Journal | Journal of Imaging |
Volume | 10 |
Issue number | 8 |
DOIs | |
Publication status | Published - 22 Aug 2024 |
Projects
- 1 Active
-
Established Career Fellowship
Finlayson, G. & Trollope, P.
Engineering and Physical Sciences Research Council
1/09/19 → 30/06/25
Project: Fellowship