Abstract
Spectral reconstruction algorithms seek to recover spectra from RGB images. This estimation problem is often formulated as least-squares regression, and a Tikhonov regularization is generally incorporated, both to support stable estimation in the presence of noise and to prevent over-fitting. The degree of regularization is controlled by a single penalty-term parameter, which is often selected using the cross validation experimental methodology. In this paper, we generalize the simple regularization approach to admit a per-spectral-channel optimization setting, and a modified cross-validation procedure is developed. Experiments validate our method. Compared to the conventional regularization, our per-channel approach significantly improves the reconstruction accuracy at multiple spectral channels, by up to 17% increments for all the considered models.
Original language | English |
---|---|
Journal | CEUR Workshop Proceedings |
Volume | 2688 |
Publication status | Published - 17 Sep 2020 |
Event | 10th Colour and Visual Computing Symposium, CVCS 2020 - Virtual, Gjoivik, Norway Duration: 16 Sep 2020 → 17 Sep 2020 |
Keywords
- Hyperspectral imaging
- Multispectral imaging
- Spectral reconstruction
Profiles
-
Graham Finlayson
- School of Computing Sciences - Professor of Computing Science
- Colour and Imaging Lab - Member
Person: Research Group Member, Academic, Teaching & Research