Abstract
The recent eruption of the Soufriere Hills Volcano in Montserrat (July, 1995, to present; September, 1997) has produced an andesitic dome (SiO2 ∼ 59–61 wt.%). The eruption has been caused by invasion of mafic magma into a preexisting andesitic magma storage region (P ∼ 130 MPa; ≥5 km depth). The composition of the andesite has remained essentially constant throughout the eruption, but heating by the mafic magma increased the andesite temperature from ≤830°C to ≤880°C. Prior to being heated, the stable mineral assemblage in the andesite was plagioclase + amphibole + orthopyroxene + titanomagnetite + ilmenite + quartz. The rise in temperature from ≤830°C to ≤880°C (fO2 ∼ 1 log unit above NNO) has caused quartz to become unstable, and has also caused changes in silicate and Fe-Ti oxide mineral compositions. The andesitic magma is likely saturated with an H2O-rich vapor phase in the upper part of the magma storage region. Melt H2O content is ∼4.7 wt.%.
Original language | English |
---|---|
Pages (from-to) | 3669-3672 |
Number of pages | 4 |
Journal | Geophysical Research Letters |
Volume | 25 |
Issue number | 19 |
DOIs | |
Publication status | Published - 1 Oct 1998 |