Abstract
Purpose: Inhibition of steroid sulfatase (STS), the enzyme responsible for the hydrolysis of steroid sulfates, represents a potential novel treatment for postmenopausal women with hormone-dependent breast cancer. Estrone and DHEA are formed by this sulfatase pathway and can be converted to steroids (estradiol and androstenediol, respectively), which have potent estrogenic properties.
Experimental Design: STX64 (667 Coumate), a tricylic coumarin-based sulfamate that irreversibly inhibits STS activity, was selected for entry into the first phase I trial of a STS inhibitor in postmenopausal women with breast cancer. STX64 was administered orally (nine patients at 5 mg and five patients at 20 mg) as an initial dose followed 1 week later by 3 × 2 weekly cycles, with each cycle comprising daily dosing for 5 days followed by 9 days off treatment. Blood and tumor tissue samples were collected for the assessment of STS activity and serum was obtained for steroid hormone measurements before and after treatment.
Results: The median inhibition of STS activity by STX64 was 98% in peripheral blood lymphocytes (PBL) and 99% in breast tumor tissue at the end of the 5-day dosing period. As expected, serum concentrations of estrone, estradiol, androstenediol, and DHEA all decreased significantly from pretreatment levels. Unexpectedly, androstenedione and testosterone concentrations also decreased. Four patients, all of whom had previously progressed on aromatase inhibitors, showed evidence of stable disease for 2.75 to 7 months. The drug was well tolerated with only minor drug-related adverse events recorded.
Conclusion: STX64 is a potent, well-tolerated STS inhibitor. It inhibits STS activity in PBLs and tumor tissues and causes significant decreases in serum concentrations of steroids with estrogenic properties.
Experimental Design: STX64 (667 Coumate), a tricylic coumarin-based sulfamate that irreversibly inhibits STS activity, was selected for entry into the first phase I trial of a STS inhibitor in postmenopausal women with breast cancer. STX64 was administered orally (nine patients at 5 mg and five patients at 20 mg) as an initial dose followed 1 week later by 3 × 2 weekly cycles, with each cycle comprising daily dosing for 5 days followed by 9 days off treatment. Blood and tumor tissue samples were collected for the assessment of STS activity and serum was obtained for steroid hormone measurements before and after treatment.
Results: The median inhibition of STS activity by STX64 was 98% in peripheral blood lymphocytes (PBL) and 99% in breast tumor tissue at the end of the 5-day dosing period. As expected, serum concentrations of estrone, estradiol, androstenediol, and DHEA all decreased significantly from pretreatment levels. Unexpectedly, androstenedione and testosterone concentrations also decreased. Four patients, all of whom had previously progressed on aromatase inhibitors, showed evidence of stable disease for 2.75 to 7 months. The drug was well tolerated with only minor drug-related adverse events recorded.
Conclusion: STX64 is a potent, well-tolerated STS inhibitor. It inhibits STS activity in PBLs and tumor tissues and causes significant decreases in serum concentrations of steroids with estrogenic properties.
Original language | English |
---|---|
Pages (from-to) | 1585-1592 |
Number of pages | 8 |
Journal | Clinical Cancer Research |
Volume | 12 |
Issue number | 5 |
DOIs | |
Publication status | Published - Mar 2006 |