Photochemical Reactions of Fluorinated Pyridines at Half-Sandwich Rhodium Complexes: Competing Pathways of Reaction

Barbara Procacci, Robin J. Blagg, Robin N. Perutz, Nuria Rendon, Adrian C. Whitwood

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Irradiation of CpRh(PMe3)(C2H4) (1; Cp = η5-C5H5) in the presence of pentafluoropyridine in hexane solution at low temperature yields an isolable η2-C,C-coordinated pentafluoropyridine complex, CpRh(PMe3)(η2-C,C-C5NF4) (2). The molecular structure of 2 was determined by single-crystal X-ray diffraction, showing coordination by C3–C4, unlike previous structures of pentafluoropyridine complexes that show N-coordination. Corresponding experiments with 2,3,5,6-tetrafluoropyridine yield the C–H oxidative addition product CpRh(PMe3)(C5NF4)H (3). In contrast, UV irradiation of 1 in hexane, in the presence of 4-substituted tetrafluoropyridines C5NF4X, where X = NMe2, OMe, results in elimination of C2H4 and HF to form the metallacycles CpRh(PMe3)(κ2-C,C-CH2N(CH3)C5NF3) (4) and CpRh(PMe3)(κ2-C,C-CH2OC5NF3) (5), respectively. The X-ray structure of 4 shows a planar RhCCNC-five-membered ring. Complexes 2–5 may also be formed by thermal reaction of CpRh(PMe3)(Ph)H with the respective pyridines at 50 °C.
Original languageEnglish
Pages (from-to)45-52
Number of pages8
JournalOrganometallics
Volume33
Issue number1
DOIs
Publication statusPublished - 13 Jan 2014

Cite this