Abstract
A plane unsteady-state linear problem of the immersion of an elastic plate of finite length in an ideal incompressible weightless fluid is considered. The deflection of the plate and the velocity of its points are known at the initial moment of time. The fluid occupies the lower halfplane, and its boundary outside the plate is free. The plate which is the bottom of a structure immersed in the fluid with a constant velocity is modeled by an Euler beam. At the initial stage of immersion, when the displacement of the structure is much smaller than the length of the plate, the plate deflection and the distribution of bending stresses in it are determined. The model used allows one to estimate the maximum stresses occurring in the elastic plate during its impact on water and to predict the moment and site of its occurrence. Calculations are performed under the conditions of the experiment carried out in MARINTEX (Norway). Qualitative agreement between the numerical and experimental results is shown.
Original language | English |
---|---|
Pages (from-to) | 491-500 |
Number of pages | 10 |
Journal | Journal of Applied Mechanics and Technical Physics |
Volume | 40 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1999 |