TY - JOUR
T1 - Plankton net community production and dark community respiration in the Arabian Sea during September 1994
AU - Robinson, Carole
AU - Williams, Peter J. le B.
PY - 1999
Y1 - 1999
N2 - Plankton community net and gross production and dark respiration were determined from in vitro changes in dissolved inorganic carbon and dissolved oxygen during September 1994 along a southeast offshore transect in the Arabian Sea. Surface rates of gross production decreased from 17±0.7 mmol C m-3 d-1 at a coastal upwelling station to 3±0.8 mmol C m-3 d-1 at the most offshore station. The euphotic zone at the time of sampling was predominantly heterotrophic, with integrated net community production values ranging from 15±7 mmol C m-2 d-1 inshore to −253±32 mmol C m-2 d-1 offshore. Calculations of the respiration attributable to the major plankton groups could account for 61–87% of the dark community respiration measured at the inshore stations, but only 15–26% of the community respiration determined offshore. Comparison of the fluxes of dissolved inorganic carbon and oxygen revealed a tendency for higher respiratory quotients than those calculated for organic metabolism prevailing at the offshore stations.
AB - Plankton community net and gross production and dark respiration were determined from in vitro changes in dissolved inorganic carbon and dissolved oxygen during September 1994 along a southeast offshore transect in the Arabian Sea. Surface rates of gross production decreased from 17±0.7 mmol C m-3 d-1 at a coastal upwelling station to 3±0.8 mmol C m-3 d-1 at the most offshore station. The euphotic zone at the time of sampling was predominantly heterotrophic, with integrated net community production values ranging from 15±7 mmol C m-2 d-1 inshore to −253±32 mmol C m-2 d-1 offshore. Calculations of the respiration attributable to the major plankton groups could account for 61–87% of the dark community respiration measured at the inshore stations, but only 15–26% of the community respiration determined offshore. Comparison of the fluxes of dissolved inorganic carbon and oxygen revealed a tendency for higher respiratory quotients than those calculated for organic metabolism prevailing at the offshore stations.
U2 - 10.1016/S0967-0645(98)00126-X
DO - 10.1016/S0967-0645(98)00126-X
M3 - Article
VL - 46
SP - 745
EP - 766
JO - Deep-Sea Research Part II: Topical Studies in Oceanography
JF - Deep-Sea Research Part II: Topical Studies in Oceanography
SN - 0967-0645
IS - 3-4
ER -