Potential of high-dose cefepime/tazobactam against multi-resistant Gram-negative pathogens

David M. Livermore, Shazad Mushtaq, Marina Warner, Simon J. Turner, Neil Woodford

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
20 Downloads (Pure)


Background: Early β-lactamase inhibitors were combined with established penicillins, but different combinations may be more appropriate to counter current β-lactamase threats, with development facilitated by the US Generating Antibiotic Incentives Now (GAIN) Act. Cefepime/tazobactam is especially attractive, combining an AmpC-stable cephalosporin with a clinically established inhibitor, active against ESBLs and suitable for high-dose administration.

Methods: Organisms (n = 563) were clinical isolates submitted to the UK national reference laboratory. MICs were determined by CLSI agar dilution with tazobactam at 4 mg/L and, for a subset, at 8 mg/L.

Results: Cefepime/tazobactam 8 + 4 mg/L achieved coverage of 96%–100% of Enterobacteriaceae with penicillinases, AmpC, ESBL, K1 or OXA-48 β-lactamases. Even at 1 + 4 mg/L, the combination inhibited >94% of isolates with penicillinases, AmpC enzymes or ESBLs. Most Enterobacteriaceae with KPC and NDM carbapenemase were resistant at current cefepime breakpoints but 80% of those with VIM types were susceptible at 8 + 4 mg/L. Tazobactam did little to potentiate cefepime against non-fermenter groups, though gains were seen against AmpC-producing Acinetobacter spp. and Stenotrophomonas maltophilia. Increasing the tazobactam concentration to 8 mg/L gave further small increases in activity against Enterobacteriaceae groups.

Conclusions: High-dose cefepime/tazobactam, justifying an 8 + 4 or 8 + 8 mg/L breakpoint, can achieve a carbapenem-like spectrum, with some additional coverage of OXA-48 (and maybe VIM) Enterobacteriaceae. Clinical evaluation is warranted.

Original languageEnglish
Pages (from-to)126-133
Number of pages8
JournalJournal of Antimicrobial Chemotherapy
Issue number1
Early online date20 Oct 2017
Publication statusPublished - 1 Jan 2018

Cite this