Potential risks and benefits of phytoestrogen-rich diets

A Cassidy

Research output: Contribution to journalArticle

163 Citations (Scopus)

Abstract

Interest in the physiological role of bioactive compounds present in plants has increased dramatically over the last decade. Of particular interest in relation to human health are the class of compounds known as the phytoestrogens, which embody several groups of non-steroidal oestrogens including isoflavones & lignans that are widely distributed within the plant kingdom. Data from animal and in vitro studies provide plausible mechanisms to explain how phytoestrogens may influence hormone dependent states, but although the clinical application of diets rich in these oestrogen mimics is in its infancy, data from preliminary studies suggest potential beneficial effects of importance to health. Phytoestrogens are strikingly similar in chemical structure to the mammalian oestrogen, oestradiol, and bind to oestrogen receptors (ER) with a preference for the more recently described ERb. This suggests that these compounds may exert tissue specific effects. Numerous other biological effects independent of the ER (e.g. antioxidant capacity, antiproliferative and antiangiogenic effects) have been ascribed to these compounds. Whether phytoestrogens have any biological activity in humans, either hormonal or non hormonal is a contentious issue and there is currently a paucity of data on human exposure. Much of the available data on the absorption and metabolism of dietary phytoestrogens is of a qualitative nature; it is known that dietary phytoestrogens are metabolised by intestinal bacteria, absorbed, conjugated in the liver, circulated in plasma and excreted in urine. Recent studies have addressed quantitatively what happens to isoflavones following ingestion – with pure compound and stable isotope data to compliment recent pharmacokinetic data for soy foods. The limited studies conducted so far in humans clearly confirm that soya isoflavones can exert hormonal effects. These effects may be of benefit in the prevention of many of the common diseases observed in Western populations (such as breast cancer, prostate cancer, menopausal symptoms, osteoporosis) where the diet is typically devoid of these biologically active naturally occurring compounds. However since biological effects are dependent on many factors including dose, duration of use, protein binding affinity, individual metabolism and intrinsic oestrogenic state, further clinical studies are necessary to determine the potential health effects of these compounds in specific population groups. However we currently know little about age related differences in exposure to these compounds and there are few guidelines on optimal dose for specific health outcomes.
Original languageEnglish
Pages (from-to)120-126
Number of pages7
JournalInternational Journal for Vitamin and Nutrition Research
Volume73
Issue number2
DOIs
Publication statusPublished - 2003

Cite this