PV module temperature prediction at any environmental conditions and mounting configurations

Eleni Kaplani, Socrates Kaplanis

Research output: Contribution to conferenceAbstractpeer-review


Photovoltaic (PV) module temperature is known to significantly affect its power output and efficiency, while it has been shown to depend mainly on the ambient temperature, the solar irradiance incident on the PV plane and the wind speed, while to a lesser extent on the wind incidence angle and various other environmental parameters as well as PV module structural characteristics, module type, etc. The mounting configuration has been shown to play a significant role in the PV temperature developed and the power output. This paper presents an algorithmic approach for the prediction of PV module temperature at any environmental conditions based on the energy balance equation taking into account PV orientation, windward and leeward side, heat convection by natural and air forced flow, heat conduction and the radiated heat by the PV module. The results are be compared to measured data under various outdoor conditions of ambient temperature, solar irradiance and wind speed. In addition, the predicted PV temperature is compared to predicted values from existing models. The robustness of the simulation algorithm developed in the prediction of PV module temperature is presented and its clear advantage over empirical models, which are fine tuned for the exact experimental conditions and/or experimental set ups under which they were developed, is illustrated. Furthermore, the coefficient f which relates the PV module temperature with the solar irradiance on the PV plane and the ambient temperature is examined for various configurations of free-standing fixed and sun-tracking PV system as well as building integrated photovoltaic (BIPV), illustrating essential differences in this and in the temperature developed in the PV module. The effect of wind speed on the coefficient f is more pronounced in the free-standing fixed and sun-tracking PV system, thus leading to a partial recuperation of the power output reduction due to PV temperature, while BIPV configurations are shown to exhibit higher f coefficient and module temperature.
Original languageEnglish
Publication statusPublished - 31 Aug 2019
EventWorld Renewable Energy Congress 18 - Kingston University, London, United Kingdom
Duration: 30 Jul 20183 Aug 2018
Conference number: 18


ConferenceWorld Renewable Energy Congress 18
Abbreviated titleWREC
Country/TerritoryUnited Kingdom
Internet address


  • PV temperature prediction
  • thermal model
  • wind speed
  • BIPV

Cite this