TY - JOUR
T1 - PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions
AU - Kaplanis, Socrates
AU - Kaplani, Eleni
AU - Kaldellis, John K.
PY - 2023/6/16
Y1 - 2023/6/16
N2 - The temperature prediction for floating PV (FPV) must account for the effect of humidity. In this work, PV temperature prediction for steady-state Tpv and transient conditions Tpv(t) incorporates the effect of humidity and cooling due to seawater (s.w.) splashing and evaporation on PV modules. The proposed formulas take as main inputs the in-plane solar irradiance, wind speed, ambient temperature, relative humidity (RH), and s.w. temperature. The transient effects of s.w. splashing and the evaporation of the s.w. layer from the module are theoretically described considering the layer’s thickness using Navier–Stokes equations. Tpv and Tpv(t) measurements were taken before and after s.w. splashing on c-Si modules at the seashore and inland. PV temperature predictions compared to measured values showed very good agreement. The 55% RH at the seashore versus 45% inland caused the Tpv to decrease by 18%. The Tpv(t) at the end of the s.w. flow of 50–75 mL/s/m on the module at the seashore was 35–51% lower than the Tpv inland. This Tpv(t) profile depends on the s.w. splashing, lasts for about 1 min, and is attributed to higher convection, water cooling, and evaporation on the modules. The PV efficiency at FPV conditions was estimated to be 4–11.5% higher compared to inland.
AB - The temperature prediction for floating PV (FPV) must account for the effect of humidity. In this work, PV temperature prediction for steady-state Tpv and transient conditions Tpv(t) incorporates the effect of humidity and cooling due to seawater (s.w.) splashing and evaporation on PV modules. The proposed formulas take as main inputs the in-plane solar irradiance, wind speed, ambient temperature, relative humidity (RH), and s.w. temperature. The transient effects of s.w. splashing and the evaporation of the s.w. layer from the module are theoretically described considering the layer’s thickness using Navier–Stokes equations. Tpv and Tpv(t) measurements were taken before and after s.w. splashing on c-Si modules at the seashore and inland. PV temperature predictions compared to measured values showed very good agreement. The 55% RH at the seashore versus 45% inland caused the Tpv to decrease by 18%. The Tpv(t) at the end of the s.w. flow of 50–75 mL/s/m on the module at the seashore was 35–51% lower than the Tpv inland. This Tpv(t) profile depends on the s.w. splashing, lasts for about 1 min, and is attributed to higher convection, water cooling, and evaporation on the modules. The PV efficiency at FPV conditions was estimated to be 4–11.5% higher compared to inland.
KW - seawater PV cooling
KW - evaporation cooling
KW - humidity enhanced convection
KW - PV temperature profiles
KW - FPV
U2 - https://doi.org/10.3390/en16124756
DO - https://doi.org/10.3390/en16124756
M3 - Article
VL - 16
JO - Energies
JF - Energies
SN - 1996-1073
IS - 12
M1 - 4756
ER -