Abstract
To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.
Original language | English |
---|---|
Article number | 033003 |
Journal | Journal of Optics |
Volume | 20 |
Issue number | 3 |
Early online date | 24 Jan 2018 |
DOIs | |
Publication status | Published - 19 Feb 2018 |
Profiles
-
David Andrews
- School of Chemistry, Pharmacy and Pharmacology - Emeritus Professor
- Centre for Photonics and Quantum Science - Member
- Chemistry of Light and Energy - Member
Person: Research Group Member, Academic, Teaching & Research