Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

Robbie Jones, Vern Manville, Jeff Peakall, Melanie J. Froude, Henry M. Odbert

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
10 Downloads (Pure)

Abstract

Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and rainfall record of the Belham River valley at the Soufrière Hills volcano (SHV), Montserrat, collected between April 2010 and April 2012. In addition to the use of peak rainfall intensity (PRI) as a base forecasting parameter, considerations for the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak 1 h rainfall intensity throughout the 2-year dataset and is higher under given rainfall conditions in year 1 than year 2. The probability of lahars is also enhanced during the wet season, when large-scale synoptic weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into logistic-regression-based rain-triggered lahar probability estimation models is shown to enhance model performance and displays the potential for successful real-time prediction of lahars, even in areas featuring strongly seasonal climates and temporal catchment recovery.
Original languageEnglish
Pages (from-to)2301-2312
Number of pages12
JournalNatural Hazards and Earth System Sciences
Volume17
Issue number12
DOIs
Publication statusPublished - 13 Dec 2017

Cite this