TY - JOUR
T1 - Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies
AU - Grönberg, Karin L. C.
AU - Watmough, Nicholas J.
AU - Thomson, Andrew J.
AU - Richardson, David J.
AU - Field, Sarah J.
PY - 2004
Y1 - 2004
N2 - The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe–non-heme Fe] active site rather than the [heme Fe–CuB] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a μ-oxo-bridged [heme Fe(III)–O–Fe(III)] active site. On reduction of the nonheme iron, the μ-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the μ-oxo-bridged [heme Fe(III)–O–Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
AB - The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe–non-heme Fe] active site rather than the [heme Fe–CuB] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a μ-oxo-bridged [heme Fe(III)–O–Fe(III)] active site. On reduction of the nonheme iron, the μ-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the μ-oxo-bridged [heme Fe(III)–O–Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
U2 - 10.1074/jbc.M400824200
DO - 10.1074/jbc.M400824200
M3 - Article
VL - 279
SP - 17120
EP - 17125
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 17
ER -