TY - JOUR
T1 - Releases of Asian houbara must respect genetic and geographic origin to preserve inherited migration behaviour: Evidence from a translocation experiment
AU - Burnside, John
AU - Buchan, Claire
AU - Salliss, Daniel
AU - Collar, Nigel
AU - Dolman, Paul
PY - 2020/3/18
Y1 - 2020/3/18
N2 - Maintaining appropriate migratory strategies is important in conservation; however, translocations of migratory animals may alter locally-evolved migration behaviours of recipient populations if these are different and heritable. We used satellite telemetry and experimental translocation to quantify differences and assess heritability in migration behaviours between three migratory Asian houbara (Chlamydotis macqueenii) breeding populations (640 km range across eastern, central and western Uzbekistan). Adults from the eastern population migrated twice as far (mean = 1,184 km ± 44 s.e.) as the western population (656 km ± 183 s.e.) and showed significantly less variation in migration distance than the central population (1,030 km ± 127 s.e.). The western and central populations wintered significantly further north (mean: +8.32°N ± 1.70 s.e. and +4.19°N ± 1.16 s.e., respectively) and the central population further west (-3.47°E ± 1.46 s.e.) than individuals from the eastern population.These differences could arise from differing innate drive, or through learnt facultative responses to topography, filtered by survival. Translocated birds from the eastern population (wild laid and captive-reared, n= 5) migrated further than adults from either western or central recipient populations, particularly in their second migration year. Translocated birds continued migrating south past suitable wintering grounds used by the recipient populations despite having to negotiate mountain obstacles. Together, this suggests a considerable conserved heritable migratory component with local adaptation at a fine geographic scale. Surviving translocated individuals returned to their release site, suggesting continued translocations would lead to introgression of the heritable component and risk altering recipient migration patterns. Conservation biologists considering translocation interventions for migratory populations should evaluate potential genetic components of migratory behaviour.
AB - Maintaining appropriate migratory strategies is important in conservation; however, translocations of migratory animals may alter locally-evolved migration behaviours of recipient populations if these are different and heritable. We used satellite telemetry and experimental translocation to quantify differences and assess heritability in migration behaviours between three migratory Asian houbara (Chlamydotis macqueenii) breeding populations (640 km range across eastern, central and western Uzbekistan). Adults from the eastern population migrated twice as far (mean = 1,184 km ± 44 s.e.) as the western population (656 km ± 183 s.e.) and showed significantly less variation in migration distance than the central population (1,030 km ± 127 s.e.). The western and central populations wintered significantly further north (mean: +8.32°N ± 1.70 s.e. and +4.19°N ± 1.16 s.e., respectively) and the central population further west (-3.47°E ± 1.46 s.e.) than individuals from the eastern population.These differences could arise from differing innate drive, or through learnt facultative responses to topography, filtered by survival. Translocated birds from the eastern population (wild laid and captive-reared, n= 5) migrated further than adults from either western or central recipient populations, particularly in their second migration year. Translocated birds continued migrating south past suitable wintering grounds used by the recipient populations despite having to negotiate mountain obstacles. Together, this suggests a considerable conserved heritable migratory component with local adaptation at a fine geographic scale. Surviving translocated individuals returned to their release site, suggesting continued translocations would lead to introgression of the heritable component and risk altering recipient migration patterns. Conservation biologists considering translocation interventions for migratory populations should evaluate potential genetic components of migratory behaviour.
KW - bustard
KW - migratory orientation
KW - migratory strategy
KW - population reinforcement
KW - population reintroduction
KW - POPULATION
KW - CHLAMYDOTIS-MACQUEENII
KW - MAGNETIC MAP
KW - BIRDS
UR - http://www.scopus.com/inward/record.url?scp=85083589775&partnerID=8YFLogxK
U2 - 10.1098/rsos.200250
DO - 10.1098/rsos.200250
M3 - Article
C2 - 32269827
VL - 7
JO - Royal Society Open Science
JF - Royal Society Open Science
SN - 2054-5703
IS - 3
M1 - 200250
ER -