Abstract
The authors describe the construction of a 0.5° lat–long gridded dataset of monthly terrestrial surface climate for the period of 1901–96. The dataset comprises a suite of seven climate elements: precipitation, mean temperature, diurnal temperature range, wet-day frequency, vapor pressure, cloud cover, and ground frost frequency. The spatial coverage extends over all land areas, including oceanic islands but excluding Antarctica. Fields of monthly climate anomalies, relative to the 1961–90 mean, were interpolated from surface climate data. The anomaly grids were then combined with a 1961–90 mean monthly climatology (described in Part I) to arrive at grids of monthly climate over the 96-yr period.
The primary variables—precipitation, mean temperature, and diurnal temperature range—were interpolated directly from station observations. The resulting time series are compared with other coarser-resolution datasets of similar temporal extent. The remaining climatic elements, termed secondary variables, were interpolated from merged datasets comprising station observations and, in regions where there were no station data, synthetic data estimated using predictive relationships with the primary variables. These predictive relationships are described and evaluated.
It is argued that this new dataset represents an advance over other products because (i) it has higher spatial resolution than other datasets of similar temporal extent, (ii) it has longer temporal coverage than other products of similar spatial resolution, (iii) it encompasses a more extensive suite of surface climate variables than available elsewhere, and (iv) the construction method ensures that strict temporal fidelity is maintained. The dataset should be of particular relevance to a number of applications in applied climatology, including large-scale biogeochemical and hydrological modeling, climate change scenario construction, evaluation of regional climate models, and comparison with satellite products. The dataset is available from the Climatic Research Unit and is currently being updated to 1998.
The primary variables—precipitation, mean temperature, and diurnal temperature range—were interpolated directly from station observations. The resulting time series are compared with other coarser-resolution datasets of similar temporal extent. The remaining climatic elements, termed secondary variables, were interpolated from merged datasets comprising station observations and, in regions where there were no station data, synthetic data estimated using predictive relationships with the primary variables. These predictive relationships are described and evaluated.
It is argued that this new dataset represents an advance over other products because (i) it has higher spatial resolution than other datasets of similar temporal extent, (ii) it has longer temporal coverage than other products of similar spatial resolution, (iii) it encompasses a more extensive suite of surface climate variables than available elsewhere, and (iv) the construction method ensures that strict temporal fidelity is maintained. The dataset should be of particular relevance to a number of applications in applied climatology, including large-scale biogeochemical and hydrological modeling, climate change scenario construction, evaluation of regional climate models, and comparison with satellite products. The dataset is available from the Climatic Research Unit and is currently being updated to 1998.
Original language | English |
---|---|
Pages (from-to) | 2217-2238 |
Number of pages | 22 |
Journal | Journal of Climate |
Volume | 13 |
Issue number | 13 |
DOIs | |
Publication status | Published - 1 Jul 2000 |