Abstract
Cytochrome c nitrite reductases perform a key step in the biogeochemical N-cycle by catalyzing the six-electron reduction of nitrite to ammonium. These multi-heme cytochromes contain a number of His/His ligated c-hemes for electron transfer and a structurally differentiated heme that provides the catalytic center. The catalytic heme has proximal ligation from lysine, or histidine, and an exchangeable distal ligand bound within a pocket that includes a conserved histidine. Here we describe properties of a penta-heme cytochrome c nitrite reductase in which the distal His has been substituted by Asn. The variant is unable to catalyze nitrite reduction despite retaining the ability to reduce a proposed intermediate in that process, namely, hydroxylamine. A combination of electrochemical, structural and spectroscopic studies reveals that the variant enzyme simultaneously binds nitrite and electrons at the catalytic heme. As a consequence the distal His is proposed to play a key role in orienting the nitrite for N-O bond cleavage. The electrochemical experiments also reveal that the distal His facilitates rapid nitrite binding to the catalytic heme of the native enzyme. Finally it is noted that the thermodynamic descriptions of nitrite- and electron-binding to the active site of the variant enzyme are modulated by the prevailing oxidation states of the His/His ligated hemes. This is behavior that is likely to be displayed by other multi-centered redox enzymes such that there are wide implications for considering the determinants of catalytic activity in this important and varied group of oxidoreductases.
Original language | English |
---|---|
Pages (from-to) | 3059–3068 |
Number of pages | 10 |
Journal | Journal of the American Chemical Society |
Volume | 137 |
Issue number | 8 |
Early online date | 6 Feb 2015 |
DOIs | |
Publication status | Published - 6 Feb 2015 |
Profiles
-
Julea Butt
- School of Biological Sciences - Professor of Biophysical Chemistry
- Centre for Molecular and Structural Biochemistry - Member
- Centre for Photonics and Quantum Science - Member
- Chemistry of Life Processes - Member
- Chemistry of Light and Energy - Member
- Energy Materials Laboratory - Member
- Molecular Microbiology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
-
Myles Cheesman
- School of Chemistry, Pharmacy and Pharmacology - Lecturer
- Centre for Molecular and Structural Biochemistry - Member
- Chemistry of Life Processes - Member
- Chemistry of Light and Energy - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
-
Tom Clarke
- School of Biological Sciences - Professor
- Centre for Molecular and Structural Biochemistry - Member
- Energy Materials Laboratory - Member
- Molecular Microbiology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research